1^{ère}S (AP)

Géométrie plane

EXERCICE nº 1

Soit A et B deux points distincts du plan.

Le point C est défini par : $4\overrightarrow{CA} - 5\overrightarrow{CB} = \overrightarrow{AB}$.

- 1. Exprimer le vecteur \overrightarrow{AC} en fonction du vecteur \overrightarrow{AB} .
- 2. Construire le point C.
- 3. Que peut-on dire des points A, B et C?

EXERCICE nº 2

- 1. Tracer un quadrilatère quelconque ABCD. Placer les milieux I, J, K et L des côtés [AB], [BC], [CD] et [DA].
- 2. Prouver que le quadrilatère IJKL est un parallélogramme.

EXERCICE nº 3

Soit ABC un triangle quelconque.

On considère les points M et N tels que : $\overrightarrow{BN} = \frac{1}{2} \overrightarrow{NC}$ et $\overrightarrow{CM} = 3\overrightarrow{AB}$.

Démontrer que les droites (AN) et (BM) sont parallèles.

EXERCICE nº 4

Soit ABC un triangle quelconque.

On considère les points I, J et K définis par : $\overrightarrow{AI} = \frac{3}{2} \overrightarrow{AB}$, $\overrightarrow{AK} = \frac{3}{4} \overrightarrow{AC}$ et J est le milieu de [BC]. Démontrer que les points I, J et K sont alignés.

EXERCICE nº 5

Soit ABC un triangle.

- 1. Placer les points M et N tels que : $4\overrightarrow{CN} = \overrightarrow{CA}$ et $4\overrightarrow{MB} = \overrightarrow{AB}$.
- 2. Démontrer que les vecteurs \overrightarrow{MN} et \overrightarrow{BC} sont colinéaires.

EXERCICE nº 6

Soit ABC un triangle.

On considère le point I défini par : $\overrightarrow{AI} = \frac{3}{4} \overrightarrow{AB}$, le point G symétrique de C par rapport à I et le point H défini par $\overrightarrow{AH} = \frac{-3}{4} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}$.

- 1. Tracer la figure.
- 2. Démontrer que les points A, G et H sont alignés.

Second degré et Géométrie plane

EXERCICE nº 1

Soit A et B deux points distincts du plan.

Le point C est défini par : $4\overrightarrow{CA} - 5\overrightarrow{CB} = \overrightarrow{AB}$.

- 1. Exprimer le vecteur \overrightarrow{AC} en fonction du vecteur \overrightarrow{AB} .
- 2. Construire le point C.
- 3. Que peut-on dire des points A, B et C?

1.
$$\overrightarrow{AB} = 4\overrightarrow{CA} - 5\overrightarrow{CB}$$

 $\overrightarrow{AB} = -4\overrightarrow{AC} - 5\overrightarrow{CA} - 5\overrightarrow{AB}$
 $\overrightarrow{AB} = -4\overrightarrow{AC} + 5\overrightarrow{AC} - 5\overrightarrow{AB}$
 $\overrightarrow{AB} + 5\overrightarrow{AB} = \overrightarrow{AC}$
 $\overrightarrow{6AB} = \overrightarrow{AC}$

- 2. On utilise le résultat de la question précédente.
- 3. Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires donc les points A, B et C sont alignés.

EXERCICE nº 2

- 1. Tracer un quadrilatère quelconque ABCD. Placer les milieux I, J, K et L des côtés [AB], [BC], [CD] et [DA].
- 2. Prouver que le quadrilatère IJKL est un parallélogramme.

 $I,\,J,\,K$ et L sont les milieux des côtés $[AB],\,[BC],\,[CD]$ et [DA] donc :

$$\overrightarrow{IB} = \frac{1}{2}\overrightarrow{AB}, \quad \overrightarrow{BJ} = \frac{1}{2}\overrightarrow{BC}, \quad \overrightarrow{DK} = \frac{1}{2}\overrightarrow{DC} \quad \text{et} \quad \overrightarrow{LD} = \frac{1}{2}\overrightarrow{AD}.$$

$$\overrightarrow{IJ} = \overrightarrow{IB} + \overrightarrow{BJ} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{BC}) = \frac{1}{2}\overrightarrow{AC}.$$

$$\overrightarrow{LK} = \overrightarrow{LD} + \overrightarrow{DK} = \frac{1}{2}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{DC} = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{DC}) = \frac{1}{2}\overrightarrow{AC}.$$

On en déduit que $\overrightarrow{IJ} = \overrightarrow{LK}$ donc le quadrilatère ABCD est un parallélogramme.

EXERCICE nº 3

Soit ABC un triangle quelconque.

On considère les points M et N tels que : $\overrightarrow{BN} = \frac{1}{2} \overrightarrow{NC}$ et $\overrightarrow{CM} = 3\overrightarrow{AB}$. Démontrer que les droites (AN) et (BM) sont parallèles.

On cherche à prouver que les vecteurs \overrightarrow{AN} et \overrightarrow{BM} sont colinéaires.

On a
$$\overrightarrow{BN} = \frac{1}{2} \overrightarrow{NC}$$
 donc $2\overrightarrow{BN} = \overrightarrow{NC}$

$$\overrightarrow{BM} = \overrightarrow{BC} + \overrightarrow{CM} = \overrightarrow{BN} + \overrightarrow{NC} + \overrightarrow{CM} = \overrightarrow{BN} + 2\overrightarrow{BN} + 3\overrightarrow{AB} = 3\overrightarrow{BN} + 3\overrightarrow{AB} = 3(\overrightarrow{AB} + \overrightarrow{BN}) = 3\overrightarrow{AN}.$$

On remarque alors que $\overrightarrow{BM} = 3 \times \overrightarrow{AN}$. Ces deux vecteurs sont donc colinéaires et les droites (AN) et (BM) sont bien parallèles.

EXERCICE nº 4

Soit ABC un triangle quelconque.

On considère les points I, J et K définis par : $\overrightarrow{AI} = \frac{3}{2} \overrightarrow{AB}$, $\overrightarrow{AK} = \frac{3}{4} \overrightarrow{AC}$ et J est le milieu de [BC]. Démontrer que les points I, J et K sont alignés.

On cherche à prouver que les vecteurs \overrightarrow{IJ} et \overrightarrow{IK} sont colinéaires.

Remarque : dire que le point J est le milieu de [BC] signifie que $\overrightarrow{BJ} = \frac{1}{2} \overrightarrow{BC}$

On se place dans le repère $(A; \overrightarrow{AB}; \overrightarrow{AC})$.

$$\overrightarrow{AI} = \frac{3}{2} \overrightarrow{AB} \text{ donc } I\left(0; \frac{3}{2}\right).$$

$$\overrightarrow{AK} = \frac{3}{4} \overrightarrow{AC} \text{ donc } K\left(\frac{3}{4}; 0\right).$$

$$\overrightarrow{AJ} = \overrightarrow{AB} + \overrightarrow{BJ} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BA} + \frac{1}{2}\overrightarrow{AC} = \overrightarrow{AB} - \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$

On en déduit que $J\left(\frac{1}{2}; \frac{1}{2}\right)$.

$$\overrightarrow{IJ}\left(\frac{1}{2}-0;\frac{1}{2}-\frac{3}{2}\right) \text{ soit } \overrightarrow{IJ}\left(\frac{1}{2};-1\right) \qquad \overrightarrow{IK}\left(\frac{3}{4}-0\;;\;0-\frac{3}{2}\right) \text{ soit } \overrightarrow{IK}\left(\frac{3}{4};-\frac{3}{2}\right)$$

On remarque alors que $\overrightarrow{IK} = \frac{3}{2} \times \overrightarrow{IJ}$. Les vecteurs \overrightarrow{IJ} et \overrightarrow{IK} sont donc colinéaires, les points I, J et K sont alors alignés.